Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
International Neurourology Journal ; : S55-62, 2021.
Article in English | WPRIM | ID: wpr-914711

ABSTRACT

Purpose@#Exercise is a representative noninvasive treatment that can be applied to various diseases. We studied the effect of resistance exercise on motor function and spatial learning ability in Parkinson disease (PD) mice. @*Methods@#The rotarod test and beam walking test were conducted to evaluate the effect of resistance exercise on motor function, and the Morris water maze test was conducted to examine the effect of resistance exercise on spatial learning ability. The effect of resistance exercise on brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) expression and 5’-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was investigated by Western blot analysis. New cell generation was confirmed by immunohistochemistry for 5-bromo-2’-deoxyuridine. @*Results@#Resistance exercise improved coordination, balance, and spatial learning ability in PD mice. Resistance exercise enhanced new cell production, BDNF and TrkB expression, and AMPK phosphorylation in PD mice. The effect of such resistance exercise was similar to that of levodopa application. @*Conclusions@#In PD-induced mice, resistance exercise enhanced AMPK phosphorylation to increase BDNF expression and new neuron generation, thereby improving spatial learning ability. Resistance exercise is believed to help improve symptoms of PD.

2.
International Neurourology Journal ; : S19-26, 2021.
Article in English | WPRIM | ID: wpr-898791

ABSTRACT

Purpose@#Inhalation of air containing high amounts of particular matter (PM) causes various respiratory disorders including asthma, chronic obstructive pulmonary disease, and lung cancer. The changes of expression of inflammatory factors by polydeoxyribonucleotide (PDRN) administration in the PM10-exposed trachea inflammation model were evaluated. @*Methods@#PM10 was administered to mouse trachea to induce acute inflammatory damage, and changes in inflammatory factors were observed after administration of PDRN and 3,7-dimethyl-1-propargylxanthine (DMPX) for 3 days daily. Expression of inflammatory cytokines, adenosine A2A receptor (A2AR), protein kinase A (PKA), 3΄,5΄-cyclic adenosine monophosphate responsive element binding protein (CREB) were detected by enzyme‐linked immunosorbent assay, immunofluorescence, and western blot assay. @*Results@#PM-exposed trachea showed increased tumor necrosis factor (TNF)-α and interleukin (IL)-1β expression, and expression of TNF-α and IL-1β was inhibited by PDRN treatment in PM-exposed mice. PM-exposed trachea showed increased nuclear factor (NF)-κB phosphorylation, and phosphorylation of nuclear factor-kappa B was inhibited by PDRN treatment in PM-exposed mice. PM-exposed trachea showed increased expression of A2AR, but PDRN treatment more enhanced A2AR expression in PM-exposed mice. PKA phosphorylation was not changed and CREP phosphorylation was decreased, however PDRN treatment increased phosphorylation of PKA and CREB in PM-exposed mice. DMPX treatment blocked all the effects of PDRN on PM-exposed mice, demonstrating that the action of PDRN occurs via A2AR. @*Conclusions@#PDRN treatment attenuated inflammation in the trachea of the PM10-exposed mice. This improving effect of PDRN can be ascribed to the activation of A2AR through the cAMP-PKA pathway.

3.
International Neurourology Journal ; : S27-34, 2021.
Article in English | WPRIM | ID: wpr-898790

ABSTRACT

Purpose@#In this study, the protective effect of voluntary wheel running exercise on muscle loss and muscle weakness in gastrocnemius of old rats was investigated. The association of voluntary wheel exercise with the peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5)/adenosine monophosphate- activated protein kinase (AMPK) signaling pathway and vascular endothelial growth factor (VEGF) expression was also evaluated. @*Methods@#Six-month-old and 22-month-old male rats were used for this experiment. The rats in voluntary wheel running exercise groups were performed wheel running for 2 months. Weight bearing test for walking strength, rotarod test for motor coordination and balance, hematoxylin and eosin (H&E) staining for histological changes in the muscle tissues, Western blot analysis for PGC-1α, FNDC5, AMPK, immunofluorescence for VEGF were conducted. @*Results@#Decreased muscle mass, strength, and coordination due to aging were associated with a decrease in the PGC-1α/ FNDC5/AMPK signaling pathway in the gastrocnemius. Voluntary wheel running exercise enhanced VEGF expression by activating the PGC-1α/FNDC5/AMPK signaling pathway, then increased muscle mass, strength, and coordination. @*Conclusions@#It has been suggested that voluntary wheel running exercise alleviates symptoms of urological diseases that are difficult to treat. Wheel running exercise is a good therapeutic strategy to prevent or treat aging-related sarcopenia.

4.
International Neurourology Journal ; : S19-26, 2021.
Article in English | WPRIM | ID: wpr-891087

ABSTRACT

Purpose@#Inhalation of air containing high amounts of particular matter (PM) causes various respiratory disorders including asthma, chronic obstructive pulmonary disease, and lung cancer. The changes of expression of inflammatory factors by polydeoxyribonucleotide (PDRN) administration in the PM10-exposed trachea inflammation model were evaluated. @*Methods@#PM10 was administered to mouse trachea to induce acute inflammatory damage, and changes in inflammatory factors were observed after administration of PDRN and 3,7-dimethyl-1-propargylxanthine (DMPX) for 3 days daily. Expression of inflammatory cytokines, adenosine A2A receptor (A2AR), protein kinase A (PKA), 3΄,5΄-cyclic adenosine monophosphate responsive element binding protein (CREB) were detected by enzyme‐linked immunosorbent assay, immunofluorescence, and western blot assay. @*Results@#PM-exposed trachea showed increased tumor necrosis factor (TNF)-α and interleukin (IL)-1β expression, and expression of TNF-α and IL-1β was inhibited by PDRN treatment in PM-exposed mice. PM-exposed trachea showed increased nuclear factor (NF)-κB phosphorylation, and phosphorylation of nuclear factor-kappa B was inhibited by PDRN treatment in PM-exposed mice. PM-exposed trachea showed increased expression of A2AR, but PDRN treatment more enhanced A2AR expression in PM-exposed mice. PKA phosphorylation was not changed and CREP phosphorylation was decreased, however PDRN treatment increased phosphorylation of PKA and CREB in PM-exposed mice. DMPX treatment blocked all the effects of PDRN on PM-exposed mice, demonstrating that the action of PDRN occurs via A2AR. @*Conclusions@#PDRN treatment attenuated inflammation in the trachea of the PM10-exposed mice. This improving effect of PDRN can be ascribed to the activation of A2AR through the cAMP-PKA pathway.

5.
International Neurourology Journal ; : S27-34, 2021.
Article in English | WPRIM | ID: wpr-891086

ABSTRACT

Purpose@#In this study, the protective effect of voluntary wheel running exercise on muscle loss and muscle weakness in gastrocnemius of old rats was investigated. The association of voluntary wheel exercise with the peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5)/adenosine monophosphate- activated protein kinase (AMPK) signaling pathway and vascular endothelial growth factor (VEGF) expression was also evaluated. @*Methods@#Six-month-old and 22-month-old male rats were used for this experiment. The rats in voluntary wheel running exercise groups were performed wheel running for 2 months. Weight bearing test for walking strength, rotarod test for motor coordination and balance, hematoxylin and eosin (H&E) staining for histological changes in the muscle tissues, Western blot analysis for PGC-1α, FNDC5, AMPK, immunofluorescence for VEGF were conducted. @*Results@#Decreased muscle mass, strength, and coordination due to aging were associated with a decrease in the PGC-1α/ FNDC5/AMPK signaling pathway in the gastrocnemius. Voluntary wheel running exercise enhanced VEGF expression by activating the PGC-1α/FNDC5/AMPK signaling pathway, then increased muscle mass, strength, and coordination. @*Conclusions@#It has been suggested that voluntary wheel running exercise alleviates symptoms of urological diseases that are difficult to treat. Wheel running exercise is a good therapeutic strategy to prevent or treat aging-related sarcopenia.

6.
International Neurourology Journal ; : S39-47, 2020.
Article | WPRIM | ID: wpr-834358

ABSTRACT

Purpose@#Multiple sclerosis is an autoimmune disease that affects the central nerve system, resulting in cumulative loss of motor function. Multiple sclerosis is induced through multiple mechanisms and is caused by inflammation and demyelination. This study aims to evaluate the neuroprotective effect of swimming exercise in experimental autoimmune encephalomyelitis (EAE) rats, an animal model of multiple sclerosis. @*Methods@#EAE was induced by an intradermal injection of 50-μg purified myelin oligodendrocyte glycoprotein 33–55 (MOG33-55) dissolved in 200-μL saline at the base of the tail. The rats in the swimming exercise group were made to swim for 30 minutes once pert a day for 26 consecutive days, starting 5 days after induction of EAE. To compare the effect of swimming exercise with interferon-β, a drug for multiple sclerosis, interferon-β was injected intraperitoneally into rats of the EAE-induced and interferon-β-treated group during the exercise period. @*Results@#Injection of MOG33-55 caused weight loss, decreased clinical disability score, and increased level of pro-inflammatory cytokines and inflammatory mediators in the lumbar spinal cord. Loss of motor function and weakness increased demyelination score. Swimming exercise suppressed demyelination and expression of pro-inflammatory cytokines and inflammatory mediators. These changes promoted recovery of EAE symptoms such as body weight loss, motor dysfunction, and weakness. Swimming exercise caused the same level of improvement as interferon-β treatment. @*Conclusions@#The results of this experiment suggest the possibility of swimming exercise in urological diseases that are difficult to treat. Swimming exercises can be considered for relief of symptom in incurable multiple sclerosis.

7.
International Neurourology Journal ; : S56-64, 2020.
Article | WPRIM | ID: wpr-834356

ABSTRACT

Purpose@#Acute respiratory distress syndrome (ARDS) is characterized by its acute onset of symptoms such as bilateral pulmonary infiltrates, severe hypoxemia, and pulmonary edema. Many patients with ARDS survive in the acute phase, but then die from significant lung fibrosis. @*Methods@#The effect of combination therapy with polydeoxyribonucleotide (PDRN) and pirfenidone on ARDS was investigated using human lung epithelial A549 cells. ARDS environment was induced by treatment with lipopolysaccharide and transforming growth factor (TGF)-β. Enzyme-linked immunoassay for connective tissue growth factor (CTGF) and hydroxyproline were conducted. Western blot for collagen type I, fibroblast growth factor (FGF), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 was performed. @*Results@#In this study, 8-μg/mL PDRN enhanced cell viability. Combination therapy with PDRN and pirfenidone and pirfenidone monotherapy suppressed expressions of CTGF and hydroxyproline and inhibited expressions of collagen type I and FGF. Combination therapy with PDRN and pirfenidone and PDRN monotherapy suppressed expression of TNF-α and IL-1β. @*Conclusions@#The combination therapy with PDRN and pirfenidone exerted stronger therapeutic effect against lipopolysaccharide and TGF-β-induced ARDS environment compared to the PDRN monotherapy or pirfenidone monotherapy. The excellent therapeutic effect of combination therapy with PDRN and pirfenidone on ARDS was shown by promoting the rapid anti-inflammatory effect and inhibiting the fibrotic processes.

8.
International Neurourology Journal ; : 79-87, 2020.
Article in English | WPRIM | ID: wpr-914689

ABSTRACT

Purpose@#Adenosine A2A receptor agonist polydeoxyribonucleotide (PDRN) possesses an anti-inflammatory effect and suppress apoptotic cell death in several disorders. In this current study, the effect of PDRN on inflammation and apoptosis in rats with Achilles tendon injury was investigated. @*Methods@#von Frey filament test and plantar test were conducted for the determination of pain threshold. Analysis of histological alterations was conducted by hematoxylin and eosin staining. Immunohistochemistry for cleaved caspase-3-positive cells and cleaved caspase-9-positive cells was done. Enzyme-linked immunoassay was used to detect the concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and cyclic adenosine-3’,5’-monophosphate (cAMP). Western blot was conducted to detect the protein levels of cAMP response element-binding protein (CREB), protein kinase A (PKA), Bcl-2-associated X (Bax), and B-cell lymphoma 2 (Bcl-2). @*Results@#PDRN treatment relieved mechanical allodynia and alleviated thermal hyperalgesia after Achilles tendon injury. TNF-α and IL-6 concentrations were decreased by PDRN application. PDRN injection significantly enhanced cAMP concentration and phosphorylated CREB versus CREB ratio, showing cAMP-PKA-CREB pathway was activated by PDRN application. PDRN treatment inhibited percentages of cleaved caspase-3-positive cells and caspase-9-posiive cells and the suppressed Bax versus Bcl-2 ratio in Achilles tendon injury rats. @*Conclusions@#PDRN is probably believed to have a good effect on pain and inflammation in the urogenital organs. PDRN may be used as a new treatment for Achilles tendon injury.

9.
International Neurourology Journal ; : 96-103, 2020.
Article in English | WPRIM | ID: wpr-914687

ABSTRACT

Purpose@#Exercise has been shown to protect against diverse brain diseases. Voluntary exercise improves cognition and has a neuroprotective effect. The aim of this investigation is to study the effect of voluntary wheel running on brain inflammation in rats with regard to inflammation and apoptosis. @*Methods@#Brain inflammation was caused by intracranial injection of lipopolysaccharide using a stereotaxic instrument. Voluntary wheel running group were conducted during 21 consecutive days, staring 2 days after brain inflammation. @*Results@#Brain inflammation increased proinflammatory cytokine production and apoptosis cell death in the hippocampus. There changes in the hippocampus deteriorated spatial learning memory. However, voluntary wheel running suppressed the secretion of inflammatory cytokines and apoptotic neuronal cell death via inactivation of nuclear factor kappa B (NF-κB)/NF-κB inhibitor-α pathway. Voluntary wheel running also promoted the recovery of the spatial learning memory impairment. @*Conclusions@#Voluntary wheel running after brain inflammation enhanced spatial learning memory by suppressing proinflammatory cytokine secretion and apoptosis cell death. Voluntary wheel running is also expected to be effective in inflammatory diseases of the urogenital system.

10.
International Neurourology Journal ; : 116-124, 2019.
Article in English | WPRIM | ID: wpr-764113

ABSTRACT

PURPOSE: Goserelin is a drug used for chemical castration. In a rat model, we investigated whether surgical and chemical castration affected memory ability through the protein kinase A (PKA)/cyclic adenosine monophosphate response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) and c-Raf/mitogen-activated protein kinases-extracellular signal–regulated kinases (MEK)/extracellular signal–regulated kinases (ERK) pathways in the hippocampus. METHODS: Orchiectomy was performed for surgical castration and goserelin acetate was subcutaneously transplanted into the anterior abdominal wall for chemical castration. Immunohistochemistry was done to quantify neurogenesis. To assess the involvement of the PKA/CREB/BDNF and c-Raf/MEK/ERK pathways in the memory process, western blots were used. RESULTS: The orchiectomy group and the goserelin group showed less neurogenesis and impaired short-term and spatial memory. Phosphorylation of PKA/CREB/BDNF and phosphorylation of c-Raf/MEK/ERK decreased in the orchiectomy and goserelin groups. CONCLUSIONS: Short-term memory and spatial memory were affected by surgical and chemical castration via the PKA/CREB/BDNF and c-Raf/MEK/ERK signaling pathways.


Subject(s)
Abdominal Wall , Adenosine Monophosphate , Blotting, Western , Castration , Cyclic AMP-Dependent Protein Kinases , Down-Regulation , Goserelin , Hippocampus , Immunohistochemistry , Memory , Memory, Short-Term , Models, Animal , Neurogenesis , Orchiectomy , Phosphorylation , Phosphotransferases , Spatial Memory
11.
International Neurourology Journal ; : S93-S101, 2019.
Article in English | WPRIM | ID: wpr-914679

ABSTRACT

PURPOSE@#Postoperative cognitive dysfunction (POCD) is a complication of surgery characterized by acute cognitive dysfunction, memory impairment, and loss of attention. The effect of polydeoxyribonucleotide (PDRN) on the POCD environment induced by lipopolysaccharide (LPS) and sevoflurane exposure were investigated in human neuronal SH-SY5Y cells.@*METHODS@#The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and WST-8 assays were performed to determine cell viability. Cyclic adenosine-3,5′-monophosphate (cAMP), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 concentrations were measured using enzyme-linked immunoassay (ELISA). Immunocytochemistry was performed for vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF), and western blotting for TNF-α, IL-1β, IL-6, and cAMP response element-binding protein (CREB).@*RESULTS@#Induction of the POCD environment reduced cell viability in the MTT and WST-8 assays. PDRN treatment reduced TNF-α, IL-1β, and IL-6 expression in POCD conditions, and significantly increased cAMP concentrations and the p-CREB/CREB ratio. PDRN treatment activated adenosine A2A receptors and then increased the expression of VEGF and BDNF, which had been reduced by LPS and sevoflurane exposure.@*CONCLUSIONS@#PDRN treatment showed a therapeutic effect on the LPS and sevoflurane-induced POCD environment. PDRN was shown to have an excellent therapeutic effect on POCD, not only by promoting rapid anti-inflammatory effects in damaged cells, but also by enhancing the expression of BDNF and VEGF.

12.
International Neurourology Journal ; : S40-S49, 2019.
Article in English | WPRIM | ID: wpr-914670

ABSTRACT

PURPOSE@#Circadian rhythm affects learning process, memory consolidation, and long-term memory. In this study, the alleviating effect of exercise on circadian rhythm disruption-induced memory deficits was investigated.@*METHODS@#BMAL1 knockdown transgenic mice (BMAL1 TG) were used as the BMAL1-TG group and the BMAL1-TG with treadmill exercise group. Female C57BL/6J mice of the same age were used as the wildtype group and the wildtype with treadmill exercise group. The mice in the treadmill exercise groups performed running on a motorized treadmill under the dark-dark conditions for 8 weeks. Short-term memory, nonspatial object memory, and spatial learning memory were determined using stepdown avoidance test, novel object-recognition test, and radial 8-arm maze test. Immunohistochemistry for doublecortin and 5-bromo-2’-deoxyuridine was conducted for the determination of hippocampal neurogenesis. Using the western blot analysis, we determined the expressions of glucocorticoid receptor (GR) and factors related to the neurogenesis and memory consolidation, such as brain-derived neurotrophic factor, tyrosine kinase B, p44/42 mitogen-activated protein kinase, cyclic AMP-responsive element binding protein, phosphatidylinositol 3-kinase, protein kinas B, protein kinase C alpha, early-growth-response gene 1.@*RESULTS@#Circadian rhythm disruption impaired memory function through inhibiting the expressions of GR and the factors related to neurogenesis and memory consolidation. Treadmill exercise improved memory function via enhancing the expressions of GR and above-mentioned factors.@*CONCLUSIONS@#Treadmill exercise acts as the zeitgeber that improves memory function under the circadian rhythm disrupted conditions.

13.
International Neurourology Journal ; : 226-227, 2018.
Article in English | WPRIM | ID: wpr-718574

ABSTRACT

No abstract available.


Subject(s)
Biomarkers
14.
International Neurourology Journal ; : S139-S146, 2018.
Article in English | WPRIM | ID: wpr-717677

ABSTRACT

PURPOSE: Sleep deprivation induces depressive symptoms. Dexmedetomidine is a α2-adrenoreceptor agonist and this drug possesses sedative, anxiolytic, analgesic, and anesthetic-sparing effect. In this study, the action of dexmedetomidine on sleep deprivation-induced depressive behaviors was investigated using mice. METHODS: For the inducing of sleep deprivation, the mice were placed inside a water cage containing 15 platforms and filled with water up to 1 cm below the platform surface for 7 days. One day after sleep deprivation, dexmedetomidine at the respective dosage (0.5, 1, and 2 μg/kg) was intraperitoneally treated into the mice, one time per a day during 6 days. Then, forced swimming test and tail suspension test were conducted. Immunohistochemistry for tyrosine hydroxylase (TH), 5-hydroxytryptamine (5-HT; serotonin), tryptophan hydroxylase (TPH) and western blot for D1 dopamine receptor were also performed. RESULTS: Sleep deprivation increased the immobility latency in the forced swimming test and tail suspension test. The expressions of TPH, 5-HT, and D1 dopamine receptor were decreased, whereas, TH expression was increased by sleep deprivation. Dexmedetomidine decreased the immobility latency and increased the expressions of TPH, 5-HT, and D1 dopamine receptor, whereas, HT expression was decreased by dexmedetomidine treatment. CONCLUSIONS: In our results, dexmedetomidine alleviated sleep deprivation-induced depressive behaviors by increasing 5-HT synthesis and by decreasing dopamine production with up-regulation of D1 dopamine receptor.


Subject(s)
Animals , Mice , Blotting, Western , Depression , Dexmedetomidine , Dopamine , Hindlimb Suspension , Immunohistochemistry , Physical Exertion , Receptors, Dopamine , Serotonin , Sleep Deprivation , Tryptophan Hydroxylase , Tyrosine 3-Monooxygenase , Up-Regulation , Water
15.
International Neurourology Journal ; : 20-29, 2018.
Article in English | WPRIM | ID: wpr-713688

ABSTRACT

PURPOSE: Benign prostatic hyperplasia (BPH) impacts quality of life in men by causing lower urinary tract symptoms. α1-Adrenoceptor (α1-AR) blockers improve lower urinary tract symptoms. We investigated the efficacy of add-on therapy with α1-AR blockers on BPH rats. METHODS: Rats in the drug-treated groups were orally administered each drug once a day for 30 days after orchiectomy. To induce BPH, rats were castrated and testosterone (20 mg/kg) was injected subcutaneously once per day for 30 days. Cystometry was conducted to measure voiding contraction pressure and the interval contraction time, immunohistochemistry was performed to measure c-Fos and nerve growth factor (NGF) expression in the neuronal voiding centers, and nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry was used to measure nitric oxide synthase (NOS) expression. RESULTS: Orchiectomy and testosterone injection decreased voiding contraction pressure and the interval contraction time, suggesting BPH symptoms. Voiding contraction pressure and the interval contraction time were greater in the group that received the combination treatment (tamsulosin with naftopidil) than in the tamsulosin monotherapy or naftopidil monotherapy groups. c-Fos, NGF, and NOS expression in the neuronal voiding centers was enhanced by BPH induction. c-Fos, NGF, and NOS expression was suppressed by the combination treatment (tamsulosin with naftopidil) to a greater extent than was the case for tamsulosin monotherapy or naftopidil monotherapy. CONCLUSIONS: Combination therapy of tamsulosin and naftopidil showed greater efficacy for the treatment of BPH than tamsulosin monotherapy or naftopidil monotherapy; therefore, combination therapy can be considered as a novel therapeutic method for BPH.


Subject(s)
Animals , Humans , Male , Rats , Immunohistochemistry , Lower Urinary Tract Symptoms , Methods , NAD , Nerve Growth Factor , Neurons , Nitric Oxide Synthase , Orchiectomy , Prostatic Hyperplasia , Quality of Life , Testosterone
16.
International Neurourology Journal ; : S39-S47, 2017.
Article in English | WPRIM | ID: wpr-191803

ABSTRACT

PURPOSE: Dexmedetomidine, an α2-adrenergic agonist, provides sedative and analgesic effects without significant respiratory depression. Dexmedetomidine has been suggested to have an antiapoptotic effect in response to various brain insults. We developed an oral mucosa patch using dexmedetomidine for sedation. The effects of the dexmedetomidine oral mucosa patch on cell proliferation and apoptosis in the hippocampus were evaluated. METHODS: A hydrogel oral mucosa patch was adhered onto the oral cavity of physiologically normal rats, and was attached for 2 hours, 6 hours, 12 hours, or 24 hours. Plasma dexmedetomidine concentrations were determined by liquid chromatography– electrospray ionization–tandem mass spectrometry–multiple-ion reaction monitoring (LC-ESI-MS/MS-MRM). Cell proliferation in the hippocampus was detected by Ki-67 immunohistochemistry. Caspase-3 immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, and Western blotting for Bax and Bcl-2 were performed to detect hippocampal apoptosis. The levels of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) in the hippocampus were also measured by Western blotting. RESULTS: Plasma dexmedetomidine concentration increased according to the attachment time of the dexmedetomidine oral mucosa patch. Hippocampal cell proliferation did not change due to the dexmedetomidine oral mucosa patch, and the dexmedetomidine oral mucosa patch exerted no significant effect on BDNF or TrkB expression. In contrast, the dexmedetomidine oral mucosa patch exerted an antiapoptotic effect depending on the attachment time of the dexmedetomidine oral mucosa patch. CONCLUSIONS: A dexmedetomidine oral mucosa patch can be used as a convenient tool for sedation, and is of therapeutic value due to its antiapoptotic effects under normal conditions.


Subject(s)
Animals , Rats , Apoptosis , Blotting, Western , Brain , Brain-Derived Neurotrophic Factor , Caspase 3 , Cell Proliferation , Dexmedetomidine , Hippocampus , Hydrogels , Immunohistochemistry , Mouth , Mouth Mucosa , Plasma , Protein-Tyrosine Kinases , Respiratory Insufficiency
17.
International Neurourology Journal ; : 178-188, 2017.
Article in English | WPRIM | ID: wpr-205049

ABSTRACT

PURPOSE: The functions of the lower urinary tract (LUT), such as voiding and storing urine, are dependent on complex central neural networks located in the brain, spinal cord, and peripheral ganglia. Thus, the functions of the LUT are susceptible to various neurologic disorders including spinal cord injury (SCI). SCI at the cervical or thoracic levels disrupts voluntary control of voiding and the normal reflex pathways coordinating bladder and sphincter functions. In this context, it is noteworthy that α1-adrenoceptor blockers have been reported to relieve voiding symptoms and storage symptoms in elderly men with benign prostatic hyperplasia (BPH). Tamsulosin, an α1-adrenoceptor blocker, is also considered the most effective regimen for patients with LUT symptoms such as BPH and overactive bladder (OAB). METHODS: In the present study, the effects of tamsulosin on the expression of c-Fos, nerve growth factor (NGF), and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the afferent micturition areas, including the pontine micturition center (PMC), the ventrolateral periaqueductal gray matter (vlPAG), and the spinal cord (L5), of rats with an SCI were investigated. RESULTS: SCI was found to remarkably upregulate the expression of c-Fos, NGF, and NADPH-d in the afferent pathway of micturition, the dorsal horn of L5, the vlPAG, and the PMC, resulting in the symptoms of OAB. In contrast, tamsulosin treatment significantly suppressed these neural activities and the production of nitric oxide in the afferent pathways of micturition, and consequently, attenuated the symptoms of OAB. CONCLUSIONS: Based on these results, tamsulosin, an α1-adrenoceptor antagonist, could be used to attenuate bladder dysfunction following SCI. However, further studies are needed to elucidate the exact mechanism and effects of tamsulosin on the afferent pathways of micturition.


Subject(s)
Aged , Animals , Humans , Male , Rats , Adrenergic Antagonists , Afferent Pathways , Brain , Ganglia , NAD , Nerve Growth Factor , Nervous System Diseases , Nitric Oxide , Nitric Oxide Synthase , Periaqueductal Gray , Prostatic Hyperplasia , Reflex , Spinal Cord Dorsal Horn , Spinal Cord Injuries , Spinal Cord , Urinary Bladder , Urinary Bladder, Neurogenic , Urinary Bladder, Overactive , Urinary Tract , Urination
18.
International Neurourology Journal ; : S141-S149, 2016.
Article in English | WPRIM | ID: wpr-134027

ABSTRACT

PURPOSE: Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. METHODS: The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used to assess neurogenesis. Western blotting was also performed to assess levels of synaptic plasticity-associated proteins, such as brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element-binding protein, early growth response protein 1, postsynaptic density protein 95, and growth-associated protein 43. The mice in the treadmill exercise at zeitgeber 1 group started exercising 1 hour after sunrise, the mice in the treadmill exercise at zeitgeber 6 group started exercising 6 hours after sunrise, and the mice in the treadmill exercise at zeitgeber 13 group started exercising 1 hour after sunset. The mice in the exercise groups were forced to run on a motorized treadmill for 30 minutes once a day for 7 weeks. RESULTS: Treadmill exercise improved short-term memory and spatial learning ability, and increased hippocampal neurogenesis and the expression of synaptic plasticity-associated proteins. These effects of treadmill exercise were stronger in mice that exercised during the day or in the evening than in mice that exercised at dawn. CONCLUSIONS: Treadmill exercise improved memory function by increasing neurogenesis and the expression of synaptic plasticity-associated proteins. These results suggest that the memory-enhancing effect of treadmill exercise may depend on circadian rhythm changes.


Subject(s)
Animals , Mice , Blotting, Western , Brain-Derived Neurotrophic Factor , Circadian Rhythm , Cyclic AMP Response Element-Binding Protein , Early Growth Response Protein 1 , Exercise Test , Fluorescent Antibody Technique , GAP-43 Protein , Hippocampus , Learning , Memory , Memory, Short-Term , Neurogenesis , Neuronal Plasticity , Post-Synaptic Density , Protein-Tyrosine Kinases , Spatial Learning
19.
International Neurourology Journal ; : S141-S149, 2016.
Article in English | WPRIM | ID: wpr-134026

ABSTRACT

PURPOSE: Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. METHODS: The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used to assess neurogenesis. Western blotting was also performed to assess levels of synaptic plasticity-associated proteins, such as brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element-binding protein, early growth response protein 1, postsynaptic density protein 95, and growth-associated protein 43. The mice in the treadmill exercise at zeitgeber 1 group started exercising 1 hour after sunrise, the mice in the treadmill exercise at zeitgeber 6 group started exercising 6 hours after sunrise, and the mice in the treadmill exercise at zeitgeber 13 group started exercising 1 hour after sunset. The mice in the exercise groups were forced to run on a motorized treadmill for 30 minutes once a day for 7 weeks. RESULTS: Treadmill exercise improved short-term memory and spatial learning ability, and increased hippocampal neurogenesis and the expression of synaptic plasticity-associated proteins. These effects of treadmill exercise were stronger in mice that exercised during the day or in the evening than in mice that exercised at dawn. CONCLUSIONS: Treadmill exercise improved memory function by increasing neurogenesis and the expression of synaptic plasticity-associated proteins. These results suggest that the memory-enhancing effect of treadmill exercise may depend on circadian rhythm changes.


Subject(s)
Animals , Mice , Blotting, Western , Brain-Derived Neurotrophic Factor , Circadian Rhythm , Cyclic AMP Response Element-Binding Protein , Early Growth Response Protein 1 , Exercise Test , Fluorescent Antibody Technique , GAP-43 Protein , Hippocampus , Learning , Memory , Memory, Short-Term , Neurogenesis , Neuronal Plasticity , Post-Synaptic Density , Protein-Tyrosine Kinases , Spatial Learning
20.
International Neurourology Journal ; : S150-S158, 2016.
Article in English | WPRIM | ID: wpr-134025

ABSTRACT

PURPOSE: Overactive bladder (OAB) causes urinary urgency, usually accompanied by frequency and nocturia. Alpha 1-adrenergic receptor (α1-AR) antagonists are known to improve lower urinary tract symptoms associated with OAB. The α1-AR antagonists constitute a variety of drugs according to the receptor subtype affinity. This study investigated the efficacy of tamsulosin, naftopidil, and a combination of the two on OAB rats. METHODS: The OAB rat model was induced by an intraperitoneal injection of cyclophosphamide for 14 days. The experimental groups were divided into 5 groups: control group, OAB-induction group, OAB-induction and tamsulosin monotherapy group, OAB-induction and naftopidil monotherapy group, and OAB-induction and tamsulosin-naftopidil combination therapy group. For the drug-treated groups, each drug was administrated for 14 days after the OAB induction. Cystometry for urodynamic evaluation and immunohistochemical stain for c-Fos and nerve growth factor (NGF) expressions in the central micturition centers were performed. RESULTS: Increased contraction pressure and time with enhanced c-Fos and NGF expressions in the central micturition centers were found in the OAB rats. Tamsulosin suppressed contraction pressure and time while inhibiting c-Fos and NGF expressions. Naftopidil showed no significant effect and combination therapy showed less of an effect on contraction pressure and time. Naftopidil and combination therapy exerted no significant effect on the c-Fos and NGF expressions. CONCLUSIONS: Tamsulosin showed the most prominent efficacy for the treatment of OAB compared to the naftopidil and combination. The combination of tamsulosin with naftopidil showed no synergistic effects on OAB; however, further studies of addon therapy might provide opportunities to find a new modality.


Subject(s)
Animals , Rats , Cyclophosphamide , Injections, Intraperitoneal , Lower Urinary Tract Symptoms , Models, Animal , Nerve Growth Factor , Nocturia , Urinary Bladder, Overactive , Urination , Urodynamics
SELECTION OF CITATIONS
SEARCH DETAIL